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ABSTRACT 

For the business models addressed in this study, we propose the implementation of distribution 

free learning framework concepts and paradigms. 

The development of a machine learning process for a predictor identified with a high degree of 

precision is done with the help of a discriminatory paradigm. 

A generative-type approach is developed, using the hypothesis that the underlying distribution 

used for the sampled and interpreted data has a parametric structure exploiting the so-called 

parametric density estimation. This choice has the advantage of avoiding learning processes for 

the distributions underlying the business models, resulting in rigorous predictions. 

For the economic models, we consider that the VANIK principle has a relevant degree of 

efficiency, using a well-defined amount of information. 

The originality and solutions proposed in this work come from the idea that in order to manage 

economic organizations, we must turn to innovative technological concepts and paradigms, such 

as machine and deep Learning as part of Artificial Intelligence. Therefore, economic activities 

will have both a controlled degree of uncertainty and a high degree of operational-strategic 

performance. 
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1. INTRODUCTION 

 

The field of Machine Learning is an integral part of Artificial Intelligence, which has found a 

wide applicability in the problems faced by economic entities within the modern and globalized 

ecosystem (Murphy, 2012). 

The purpose of our scientific research is to introduce and analyze the concept of "Generative 

Models", a concept specific to Machine Learning, the paradigms offered, at the same time we 

offer an extensive and in-depth theoretical presentation of their application for business models, 

the mathematical foundation that subsequently enables the development of strategic operational 

algorithms. 
A decisive role regarding the economic performance and the generated added value, in the case 

of business models implemented for modern economic organizations, is held by the concepts of 

"underlying distribution", and the optimal, Bayes-type category classifier is identified within the 

paradigms used. 

Addressing economic processes with the help of underlying distributions has a much higher 

degree of complexity than the use of precision predictors. For certain business models which are 
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apparently difficult to approach, generational mathematical models are an efficient solution with 

a high degree of accuracy. Using intelligent solutions (specific to digital approaches) for specific 

economic challenges, mathematical estimation of the used model’s parameters offers a simpler 

path for the decision-maker than the approach with the help of discriminatory predictors. 

The current practice of managerial decision, shows us that a specific task, with a high degree of 

precision, is not always identifiable, thus, the data used in systemic processes are modeled to 

generate predictions, at a well-defined time, without initializing a specific predictor, or due to 

distortions generated by the interpretability of the data. 

Our study and analysis are based, starting with the classical methods of estimating the 

parameters used for the data, found in literature under the name of "maximum probabilistic 

principle", in continuation of the developed reasonings, we introduce two assumptions that are 

involved in the learning processes. 

We consider that a significant degree of relevance, for business models’ applications, is also held 

by “E.M. algorithms" which calculate the maximum probability in the presence of variable sizes, 

we also consider particularly useful a description of the Bayesian analysis.  

This approach is the result of an operational case study, found in the modern business 

ecosystem, for dynamic economic organizations, looking for appropriate answers to the 

challenges encountered, (Barber, 2012). We assume that we are studying an economic medical 

research organization, which manufactures a vaccine to combat an ongoing pandemic, a global 

challenge, for which concentrated and focused efforts, locally, zonally, globally, must offer 

solutions with a maximum degree of efficiency, possibly optimal. In this context, it is desirable 

to estimate the probability of survival for individuals who have used this type of vaccine, a 

sampling process is developed for this, on a group of 𝑚 people who have used this type of 

vaccine. 

 
2. FORECAST AND MAXIMAL PROBABILITY 

 

We consider 𝑆 = (𝑥1, … , 𝑥𝑚)the "training (learning)” group, where for each𝑖, 𝑥𝑖 = 1if is a 

human individual who has successfully passed through the pandemic and 𝑥𝑖 = 0 in other cases. 

We generate an underlying distribution using a single parameter 𝜃 ∈ [0, 1], which explicitly 

indicates the probability of survival in the pandemic, this parameter 𝜃 must be estimated with the 

help of the "training (learning) group" 𝑆, it is advisable to use an average representing those "1" 

in the group 𝑆 as estimators, resulting: 

𝜃˄ =
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1       (1) 

 It is obvious that 𝐄𝐬[θ˄] = θ,𝜃˄ is a rigorously correct (unbiased) estimator of 𝜃, as long 

as 𝜃 is the average of random binary variables within the set 𝑚, using "𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝐻𝑜𝑒𝑓𝑓𝑑𝑖𝑛𝑔“ 

with the probability of at least 1 − 𝛿 for the entire choice over 𝑆, it results: 

|𝜃˄ − 𝜃| ≤ √log (
2

𝛿
) /2𝑚   ………….(2) 

We can perceive 𝜃˄ as being the "Maximum Likelihood Estimator", (Shalev-Shwartz, 2007) at 

the onset we define the probability for the "sample" for 𝑆, under the formalism: 

 

𝐏[S = (x1, … , xm)] = ∏ θxi(1 − θ)1−xi = θ∑ xii (1 − θ)∑ (1−xi).im
i=1   

which offers the possibility of defining the “likelihood log" on 𝑆, using the 𝜃 parameters, as log 

of the expression: 

𝐿(𝑆; 𝜃) = log(𝐏[S = (𝑥1, … , 𝑥𝑚)] = log (𝜃) ∑ 𝑥𝑖 + log (1 − 𝜃) ∑ (1 − 𝑥𝑖)
𝑖

𝑖
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The maximum likelihood estimator is the parameter that maximizes the induced probability for 

the business model transposed operationally, strategically: 

𝜃˄ ∈ 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝐿(𝑆; 𝜃)    (3) 

For the proposed case study, that of the economic medical research organization it is obvious 

that equation (1) is the maximum likelihood estimator, deriving 𝐿(𝑆; 𝜃), after 𝜃 and equaling this 

mathematical formalism with 0, it results: 
∑ 𝑥𝑖𝑖

𝜃
− 

∑ (1−𝑥𝑖)𝑖

1−𝜃
= 0, solving this type of equation for 𝜃, the estimator formalized in 

equation (1) results, perfectly adapted to the operationally and strategically implemented 

business model for our study (Shalev-Shwartz, 2007). 

 

3. CONTINUOUS RANDOM VARIABLE AND MAXIMAL LIKELIHOOD 

ESTIMATION 

 

In the modern business models’ strategic implementation and operationalization processes, 

continuous random variables have a role and a value of highly defined generated economic 

performance. 

Considering 𝑋 a continuous random variable, for most values 𝑥 ∈ 𝑹, we have 𝐏[X = x] = 0  and 

the way of assessing the likelihood is obvious. 

Business models specific to modern economic organizations induce the need to define the 

estimate as 𝑙𝑜𝑔 of the probability density from 𝑋to 𝑥. 

The "training (learning)” group, 𝑆 = (𝑥1, … , 𝑥𝑚) is staggered in full agreement with the 

distribution density, 𝑃𝜃 the probability on 𝑆 for a given 𝜃 is defined, expressable by the 

formalism: 

 

𝐿(𝑆; 𝜃) = log (∏ 𝑃𝜃(𝑥𝑖)) = ∑ log(𝑃𝜃(𝑥𝑖))

𝑚

𝑖=1

𝑚

𝑖=1

. 

 

Positioning ourselves in this thinking paradigm, the maximum likelihood estimator is generated 

by maximizing the expression 𝐿(𝑆; 𝜃) after 𝜃, perfectly adaptable to almost all the business 

models addressed, exemplifying, considering a Gauss-type random variable, (Bishop, 2006) for 

each density function of 𝑋, it is set customizable with the help of 𝜃 = (𝜇, 𝜎) defined under the 

formalism: 

 

𝑃𝜃(𝑥) =
1

𝜎√2𝜋
exp (−

(𝑥 − 𝜇)2

2𝜎2
). 

 

The likelihood may be reformulated as follows: 

𝐿(𝑆; 𝜃) = −
1

2𝜎2
∑(𝑥𝑖 − 𝜇)2 − 𝑚𝑙𝑜𝑔(𝜎√2𝜋).

𝑚

𝑖=1

 

 

A procedure to identify a parameter 𝜃 = (𝜇, 𝜎), optimizing the analyzed process is initiated, the 

likelihood derivate is sampled, 𝜇 and 𝜎 and compared to 0, from which two mathematical 

formalisms result, as follows: 

𝑑

𝑑𝜇
𝐿(𝑆; 𝜃) =

1

𝜎2
∑(𝑥𝑖 − 𝜇) = 0

𝑚

𝑖=1
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𝑑

𝑑𝜎
𝐿(𝑆; 𝜃) =

1

𝜎3
∑(𝑥𝑖 − 𝜇)2 −

𝑚

𝜎
= 0

𝑚

𝑖=1

 

 

 

Solving the previous equations generates the estimated maximum likelihood: 

𝜇^ =
1

𝑚
∑ 𝑥𝑖 ,           𝜎^ = √

1

𝑚
∑(𝑥𝑖 − 𝜇^)2

𝑚

𝑖=1

𝑚

𝑖=1

 

 

The estimated maximum likelihood is not always an objective estimator with a high degree of 

correctness, if for example 𝜇^ is not unbiased there is implicitly the possibility of demonstrating 

that the variant estimator 𝜎^ of is biased. 

For a better understanding of the mathematical formalisms used, in the method of estimating the 

calculations, there is the possibility of “simplifying the notations", as follows. 

𝑃[𝑋 = 𝑥} represents both the likelihood that 𝑋 = 𝑥, in the case of random variables but also the 

density of distribution of 𝑥 for all continuous variables. 

 

4. MINIMIZATION OF EMPIRIC RISK AND MAXIMAL PROBABILITY 

The probability estimator offers similar characteristics to the "Empirical Risk Minimisation 

Principle (E.R.M.)", which is the subject of extensive scientific studies, (Devroye et al, 1995). 

The E.R.M principle, applied to a group 𝐻, for which we select a learning (training) group, 

under this hypothesis ℎ ∈ 𝐻, this minimizing empirical risk. 

The maximum probabilistic estimator is recognizable in E.R.M. for a particular loss function, for 

a given parameter 𝜃 and an observation 𝑥, we define the loss of 𝜃 on 𝑥 as being represented by 

the mathematical formalism, (Shalev-Shwartz, 2007).: 

𝑙(𝜃, 𝑥) = − log(𝑃𝜃[𝑥]).             (4) 

𝑙(𝜃, 𝑥), it in practice the negation of the probability on the observation made 𝑥, prca data are 

distributed in relation (according to) 𝑃𝜃. 

The loss function (its highlighting) is known in specialized scientific literature as the "log-loss" 

function. 

The maximum probability principle is equivalent to initiating a process of minimizing empirical 

risk, but the loss function paradigm must be complied with at the same time, and is expressable 

as follows: 

𝑎𝑟𝑔𝑚𝑖𝑛𝜃 ∑ (− log(𝑃𝜃[𝑥𝑖])) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 ∑ log (𝑃𝜃[𝑥𝑖])𝑚
𝑖=1

𝑚
𝑖=1 . 

We assume that the data are distributed in agreement with the distribution 𝑃 (not necessarily 

represented in parametric form), the real risk faced by the business model adopted for the 

economic organization positioned in a modern, dynamic and hypercompetitive ecosystem, 

according to parameter 𝜃, is represented by the mathematical formalism: 

𝑬𝑥[𝑙(𝜃, 𝑥)] = − ∑ 𝑃[𝑥] log(𝑃𝜃[𝑥]) =

𝑥

 

{∑ 𝑃[𝑥] log (
𝑃[𝑥]

𝑃𝜃[𝑥]
)𝑥 } (𝐷𝑅𝐸[𝑃||𝑃𝜃) + {∑ 𝑃[𝑥] log(1/𝑃[𝑥])}(𝐻(𝑃)𝑥                            (5)  

 

in the symbolism used 𝐷𝑅𝐸 is known as being "𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦" and 𝐻 as 

“𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛", relative entropy is the quantifiable difference between two probabilities, 
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specific to the business model adopted, for discrete variables, always non negative this is equal 

to "0" only if the two distributions are practically the same, the risk assumed by the strategic 

operational transposition of the organizational business model is minimal when the mathematical 

relationality 𝑃𝜃 = 𝑃 exists. 

The previously presented mathematical expression, relationality (5), shows how the operational 

paradigm of the implemented business model, the generative working hypothesis, directly 

affects the estimate of density, even in limiting infinite data (Murphy, 2012).  

In conclusion, if for the work distribution assumed for the economic organization studied, a 

certain parametric form, the suboptimality is not identified and possibly the appearance of a 

business model inferior in terms of mathematical substantiation are perfectly measurable using 

the relative divergence of entropy evaluated during systemic processes. 

 

5. EXTRAPOLATING THE PARADIGM ASSOCIATED TO BUSINESS MODELS 

 

In the case of operational-strategic business models, we have the implicit question of how 

correct is the choice of the maximum probability estimator in the analysis and modeling of 

systemic processes encountered in managerial practice, in order to identify a correct response for 

this type of challenge, it is necessary to define how the quality of an approximation solution for 

the problem of estimating the organizational economic performance is evaluated. 

There are different approaches for losses generated by a particular type of business model 

implemented organizationally, distinct from the automatic learning systemic processes, 

generative learning clearly defines conceptually the induced loss. 

In some applications, for economic organizations, positioned within modern business 

ecosystems it is relatively easy to argue that the principle of maximum probability guarantees a 

low real risk, and for estimating the average of a Gaussian-type variant variable, (Shalev-

Shwartz, 2007), we assume that the maximum probabilistic estimator allows the average 

formalism, as follows: 𝜇^ =
1

𝑚
∑ 𝑥𝑖𝑖 . 

If we consider 𝜇∗ as the optimal parameter, then, 𝑬𝑥∼𝑁(𝜇∗,1)[𝑙(𝜇˄, 𝑥) − 𝑙(𝜇∗, 𝑥)] =

𝑬𝑥∼𝑁(𝜇∗,1) log (
𝑃𝜇∗[𝑥]

𝑃
𝜇^[𝑥]

) = 𝑬𝑥∼𝑁(𝜇∗,1)(−
1

2
(𝑥 − 𝜇∗)2 +

1

2
(𝑥 − 𝜇˄)2) =

𝜇˄2

2
−

(𝜇∗)2

2
+ (𝜇∗ −

𝜇˄)𝑬𝑥∼𝑁(𝜇∗,1) =
𝜇˄2

2
−

(𝜇∗)2

2
+ (𝜇∗ − 𝜇^)𝜇∗ =

1

2
(𝜇^ − 𝜇∗)2.    (6)  

It should be mentioned that in the symbolism used 𝜇^ is the average of 𝑚 Gauss-type variables, 

so for strategically and operationally transposed business models, we identify a normal 

distribution with the most unfavorable mean 𝜇∗ and variant 
𝜎∗

𝑚
, we identify the possibility that the 

limits (margins, boundaries) of the form used are, with the probability of at least (1 − 𝛿), there 

is |𝜇^ − 𝜇∗| ≤∈,where ∈ depends directly on 
𝜎∗

𝑚
 and 𝛿. 

There are operational situations in which significant exceeding of the maximum probability 

estimator is found, in this we can exemplify the use of a Bernoulli-type random variable, 𝑋, and 

the mathematical relationality 𝑃[𝑋 = 1] = 𝜃∗. 

In probability theory, concentration inequalities offer limits on how a random variable deviates 

from a certain value (usually its expected value).  

The law of large numbers of classical probability theory states that sums of independent random 

variables are, under very mild conditions, close to their expectations with a high probability. 

Such amounts are the most basic examples of random variables concentrated around their mean. 

Recent results show that such behavior is divided by other functions of independent random 
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variables. Concentration inequalities can be sorted according to how much information about the 

random variable is needed to use the concentration inequality. 

Using the Hoeffding inequality is easy to obtain a guarantee on |𝜃∗ − 𝜃^| which is maintained 

with a high subsequent probability, so if our goal is to obtain a low expected value for the log 

loss function defined by formalism (5), assuming that 𝜃  ∗ tends to zero, but is greater than it, the 

probability that no element of the sample size 𝑚 to be 1 is (1 − 𝜃∗)𝑚, this is higher than 

𝑒−2𝜃∗𝑚. 

We notice that whenever 𝑚 ≤
log (2)

2𝜃∗ , the probability that the samples are totally equal to zero is 

at least 50%, thus the rule in which the maximum probability is set with 𝜃^ = 0 is established, 

the mathematical formalism that represents the previous observation is: 

 

 𝑬𝑥∼𝜃∗ [𝑙(𝜃^, 𝑥)] = 𝜃∗𝑙(𝜃^, 1) + (1 − 𝜃∗)𝑙(𝜃^, 0) = 𝜃∗ log (
1

0
) = ∞.  

 

The previous examples are those that determine our maximum attention and mathematical 

prudence (argumentation and justification only by calculation) in applying the paradigm and the 

maximum probabilistic principle, (Koller & Friedman, 2009). 

In particular cases identifiable in the modern business ecosystem, we recommend accessing the 

totality of software tools, developed with the help of the features offered by Artificial 

Intelligence vectors, such as Machine & Deep Learning (Murphy, 2012). 

 

6. CLASSICAL APPROACH TO BUSINESS MODELS 

 

The automatic learning processes, operationally-strategically transposed for the business models 

implemented organizationally are addressed in the generative, estimative supposition of the 

parameters used, with the help of the "naive Bayes-type” analysis classifications. 

In strategic forecasts, the prediction is made using a label 𝑦 ∈ {0, 1} based on a vector of 

characteristics, of the form, 𝑥 = (𝑥1, … , 𝑥𝑑), in which each 𝑥𝑖 is assumed to be positioned in the 

group {0, 1}. 
The mathematical formalism by which the optimal Bayes-type classifier is evaluated is presented 

below, as follows: 

 

 ℎ𝐵𝑎𝑦𝑒𝑠(𝒙) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈[0,1]𝑃[𝑌 = 𝑦|𝑋 = 𝒙] 

 

In order to describe the probabilistic function 𝑃[𝑌 = 𝑦|𝑋 = 𝒙𝒙] in detail, the  parameters 2𝑑 are 

necessary, each corresponding to 𝑃[𝑌 = 1|𝑋 = 𝒙] for fixed values of 𝑥 ∈ {0, 1}𝑑, this approach 

that the number of business models (examples) must have an exponential increase, depending on 

the number of characteristics identified, within the implementation and analysis processes. 

In the "naive Bayes-type analysis" approach of business models, (Barber, 2012) as for a given 

ticket, the analyzed characteristics are independent from each other, from where it results that: 

 

 𝑃[𝑋 = 𝒙|𝑌 = 𝒚] = ∏ 𝑃{𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦}𝑑
𝑖=1 . 

 

With this hypothesis and using the "Bayes Rule", perhaps the most important rule in "Data 

Science", mathematically expresses the updating of a supposition, based on certain certainties, 

evidence, so it provides an exhaustive description of the learning process, so the act of learning, 

thus the "optimal Bayes classifier" is expressed with the help of the formalism: 
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 ℎ𝐵𝑎𝑦𝑒𝑠(𝒙) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈[0,1]𝑃[𝑌 = 𝑦|𝑋 = 𝒙] = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈{0,1}𝑃[𝑌 =

𝑦]𝑃[𝑋 = 𝒙|𝑌 = 𝑦] = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈{0,1}𝑃[𝑌 = 𝑦] ∏ 𝑃[𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦]𝑑
𝑖=1     (7)  

For the business model studied, the number of useful parameters that are estimated is the 

dimensionality 2𝑑 + 1, the generative assumption in which we are positioned generates a 

significant reduction in the number of parameters to be learned, thus using the paradigm of the 

maximum probabilistic principle in the estimation of these parameters, is generated, which in the 

scientific literature is known as the “Native Bayes Classification", (Barber, 2012). 

 

7. LINE DISCRIMINATION ANALYSIS 

 

For the study of business models addressing the problem with the help of "Linear Discrimination 

Analysis (L.D.A.)" is a very good argument about how generative hypotheses simplify specific 

learning processes, as in the Bayesian classification, the phenomenon of prediction is taken into  

 

account using a label 𝑦 ∈ {0, 1} as the basis of the vector with the characteristics 𝒙 =
(𝑥1, … , 𝑥𝑑). 

The first generative hypothesis is that 𝑃[𝑌 = 1] = 𝑃[𝑌 = 0 =
1

2
, the second shows the 

conditional probability of 𝑋 for a given 𝑌 is a Gauss distribution, and finally, the matrix 

covariance of the Gauss distribution is the same for two values of the labels used. 

Considering 𝜇0, 𝜇1 ∈ 𝑅𝑑 and 𝛴 being the covariance matrix, then the density distribution is 

expressed by formalism:  

 𝑃[𝑋 = 𝒙|𝑌 = 𝑦] =
1

(2𝜋)𝑑/2|𝛴|1/2 exp (−
1

2
(x-𝝁𝑦)𝑇𝛴−1(𝒙 − 𝝁𝑦)). 

Using the Bayes Rule, the following formalism results: 

 

 ℎ𝐵𝑎𝑦𝑒𝑠(𝒙) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈{0,1}𝑃[𝑌 = 𝑦]𝑃[𝑋 = 𝒙|𝑌 = 𝑦], this is the prediction for 

ℎ𝐵𝑎𝑦𝑒𝑠(𝒙) = 1, if log (
𝑃[𝑌=1]𝑃[𝑋 = 𝒙|𝑌 = 1],

𝑃[𝑌=0]𝑃[𝑋 = 𝒙|𝑌 = 0],
) > 0, it is found in the literature under the name 

"log-probabilistic ratio", in this case, applied on a chosen business model, the log-probabilistic 

ratio becomes, 
1

2
(𝒙 − 𝝁0)𝑇𝛴−1(𝒙 − 𝝁0) −

1

2
(𝒙 − 𝝁1)𝑇𝛴−1(𝒙 − 𝝁1). 

It follows, in the mathematical formalism that: 

 

𝒘 = (𝝁1 − 𝝁0)𝑇𝛴−1 and 𝑏 =
1

2
(𝝁0

𝑇𝛴−1𝝁0−𝝁1
𝑇𝛴−1𝝁1)      (8) 

 

The optimal Bayes classifier is a linear classifier, the previous derivation generates practical, the 

generative hypothesis sought, identifying the classification parameters, 𝝁0, 𝝁1, 𝛴, the values are 

calculable by means of formalism (8). 

 

8. E.M ALGORITHM AND LATENT VARIABLES 

 

In the operational-strategic transposition of generative concepts and paradigms within business 

models, it is hypothesized that all data is generated by sampling from a specific parametric 

distribution, positioned over the identified space 𝜒, sometimes the convention of representation 

of the distribution used with the help of "latent random variables” is made, an example 

commonly found in economic systemic applications is that of the mix of 𝑘 Gauss distributions, 

(Bishop, 2006). 
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For 𝜒 = 𝑹𝑑 we assume that each 𝒙 is generated in two stages, as follows: 

(i) We choose a random number from the group {1, … , 𝑘}, either 𝑌 the random variable 

corresponding to this choice, we note 𝑃[𝑌 = 𝑦] = 𝑐𝑦. 

(ii) We choose x from the value base 𝑌 in agreement with the Gauss distribution: 

𝑃[𝑋 = 𝒙|𝑌 = 𝑦] = 𝑃[𝑋 = 𝒙|𝑌 = 𝑦] =
1

(2𝜋)𝑑/2|𝛴|1/2 exp (−
1

2
(x-𝝁𝑦)𝑇𝛴−1(𝒙 − 𝝁𝑦)).     (9) 

The density of the business model implemented is: 

 

𝑃[𝑋 = 𝒙] = ∑ 𝑃[𝑌 = 𝑦]𝑘
𝑦=1 𝑃[𝑋 = 𝒙|𝑌 = 𝑦] = ∑ 𝑐𝑦

𝑘
𝑦=1

1

(2𝜋)𝑑/2|𝛴|1/2 exp (−
1

2
(x-

𝝁𝑦)𝑇𝛴−1(𝒙 − 𝝁𝑦)). 

 

In the data used for the chosen business model, there is no possibility of identifying variable 𝑌 

because this is a "hidden" variable, this type of variable is still introduced, so the probability 𝑋 is 

well structured and described using a simple parameter.  

Generalizing, either 𝜃 the group of parameters belonging to the common distribution of 𝑋 and 𝑌, 

then, the log-likelihood of a 𝒙 type observation, admits the following mathematical formalism:  

 log(𝑃𝜃[𝑋 = 𝑥]) = log (∑ 𝑃𝜃[𝑋 = 𝒙, 𝑌 = 𝑦])𝑘
𝑦=1 . 

 

 

Considering a sample, of the type 𝑆 = (𝑥1, … , 𝑥𝑚) is is desired to identify a value 𝜃 that 

maximizes the log-likelihood of 𝑆: 

 

𝐿(𝜃) = 𝑙𝑜𝑔 ∏ 𝑃𝜃[𝑋 = 𝑥𝑖] = ∑ log (∑ 𝑃𝜃[𝑋 = 𝑥𝑖 , 𝑌 = 𝑦])

𝑘

𝑦=1

𝑚

𝑖=1

𝑚

𝑖=1

 

 

The maximum probability estimator is practically the solution to maximizing the problem: 

 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝐿(𝜃) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 ∑ log (∑ 𝑃𝜃[𝑋 = 𝑥𝑖 , 𝑌 = 𝑦])𝑘
𝑦=1

𝑚
𝑖=1 . 

In the operationalization of several business models for economic organizations, the sum 

identifiable in the previous mathematical formulation, under "𝑙𝑜𝑔" makes it so that the 

transposition within a dedicated software, in terms of optimization, raises a high level of 

calculation, (MacKay, 2003). 

The most efficient and reliable Expectation-Maximization algorithm for economic entities, 

positioned in an ultra dynamic and competitive business ecosystem is the one due to 

"𝐷𝑒𝑚𝑝𝑠𝑡𝑒𝑟, 𝐿𝑎𝑖𝑟𝑑, 𝑅𝑢𝑏𝑖𝑛", this is an iterative procedure to search for a local maximum 𝐿(𝜃), 

as long as "𝐸. 𝑀. " does not guarantee finding a global maximum, practical operational solutions, 

specific and particularly useful to each individual business model approached, are still generated, 

(MacKay, 2003). 

 

9. ALTERNATIVE TO THE MAXIMIZATION PROCESS E.M. ALGORITHM 

 

Analyzing the 𝐸. 𝑀. algorithm it is easily observable that it is an alternative to the maximization 

algorithm, specific to management decision processes is “𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛": 

 

𝐺(𝑄, 𝜃) = 𝐹(𝑄, 𝜃) − ∑ ∑ 𝑄𝑖,𝑦 log(𝑄𝑖,𝑦) .

𝑘

𝑦=1

𝑚

𝑖=1
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In the case of the implemented business models, (Shalev-Shwartz, 2007) the second term 

represents the sum “𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑟𝑜𝑤𝑠" of 𝑄, defined as follows: 𝑸 = {𝑄 ∈
[0, 1]𝑚,𝑘: ∀𝑖, ∑ 𝑄𝑖,𝑦 = 1}𝑘

𝑦=1 . 

This is the multitude of matrices with rows (lines) defined probabilistically on [𝑘]. 
As an immediate involvement, we affirm that in the analysis paradigm of the business model in 

which we position ourselves, the procedure 𝐸. 𝑀., never decreases the log-likelihood, for the 

totality 𝑡 there is the mathematical relationality: 

𝐿(𝜃(𝑡+1)) ≥ 𝐿(𝜃(𝑡)). 

 

10. E.M. FOR THE GAUSSIAN MIXED. SOFT K MEANS  

 

A significant case to be analyzed and discussed is that of the mix of 𝑘 variables 𝐺𝑎𝑢𝑠𝑠 in which 

𝜃 is a triplet of the form (𝑐, {𝜇1, … , 𝜇𝑘}, {∑ , … , ∑ }𝑘 ) 1  where 𝑃𝜃[𝑌 = 𝑦] = 𝑐𝑦 and 𝑃𝜃[𝑋 = 𝑥|𝑌 =

𝑦] is presented in relationality (9), (Koller&Friedman, 2009). 

By applying the E.M algorithm, we identify two steps to follow, as follows: 

 

(i) Expectation: for ∀𝑖 ∈ [𝑚], 𝑦 ∈ [𝑘], results , 𝑃𝜃(𝑡)[𝑌 = 𝑦|𝑋 = 𝑥𝑖] =
1

𝑍𝑖
𝑐𝑦

(𝑡)
exp (−

1

2
||𝑥𝑖 − 𝜇𝑦

(𝑡)
||2)                                                                              (10) 

 

(ii) Maximization: 𝜃𝑡+1 must be chosen to maximize 𝜃(𝑡+1) =

𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝐹(𝑄(𝑡+1), 𝜃), determined in the calculation using the E.M. algorithm, of 

latent variables, starting from  

 

(iii) ∑ ∑ 𝑃𝜃(𝑡)[𝑌 = 𝑦|𝑋 = 𝑥𝑖](log(𝑐𝑦) −
1

2
||𝑥𝑖 − 𝜇𝑦||2)𝑘

𝑦=1
𝑚
𝑖=1                              (11) 

Rearranging the terms results in,𝜇𝑦 = ∑ 𝑃𝜃(𝑡)[𝑌 = 𝑦|𝑋 = 𝑥𝑖]𝑥𝑖
𝑚
𝑖=1   

 

Where 𝜇𝑦 is the weighted average of 𝑥𝑖 where the weights are in agreement with the 

probabilities calculated at the previous Wait Step, in order to identify the optimal  𝑐, we continue 

the developed reasoning, ensuring that 𝑐 presents the characteristics and therefore is a vector 

structure, as follows: 

 

 𝑐𝑦 =
∑ 𝑃𝜃(𝑡)[𝑌=𝑦|𝑋=𝑥𝑖]𝑚

𝑖=1

∑ ∑ 𝑃𝜃(𝑡)[𝑌=𝑦′|𝑋=𝑥𝑖]𝑚
𝑖=1

𝑘
𝑦′=1

                                                                                       (12) 

 

It is interesting to make a comparison between algorithms, so in relation to "𝐾 −
𝑚𝑒𝑎𝑛𝑠 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚", within it first is initiated an assignment process for each example according 

to the cluster, compared to the distance ||𝑥𝑖 − 𝜇𝑦||, the probability that each example (case 

study) belongs to each cluster is determined within the systemic operationalization with the help 

of E.M. 

The centers addressed are updated on the basis of a weighted sum at the level of the entire 

sample studied, which is why the E.M. algorithm for "k-means" is referred to in the literature as 

"soft k-means” as well. 
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11. CONCLUSIONS

The usefulness and efficiency of implementing the solutions offered via Artificial Intelligence, 

through the sub-domains of systemic activity, Deep Learning and Machine Learning find their 

confirmation for economic organizations in generating added value and superior managerial 

performance. 

In the case of generative approach through Machine Learning, the distribution of data sampled 

and used in specific economic processes, in specific cases, in the processes of estimating the 

parametric density, is intended, (Shalev-Shwartz, 2007), (Bishop, 2006). 

The reasonings presented in this work were specific to the actors of the modern economic 

ecosystem, the underlying distribution of data is presented in a parametric mathematical 

formalism specific to each chosen business model, the aim pursued in the case of this study is to 

estimate the value of these parameters. 

Some mathematical and economic principles have been presented and used in the processes of 

estimating parameters, including the maximum probabilistic principle, the Bayesian type 

estimation. 

Relevant importance was given to the specific algorithms used in the operational-strategic 

systemic implementation under different working hypotheses, underlying to distribution 

phenomena such as Naïve Bayes, L.D.A., E.M., (Koller & Friedman, 2009) 

Finally, this scientific communication, without proposing an exhaustive approach to economic 

phenomena that have a relevant degree of uncertainty, offered novel solutions, well grounded 

mathematically, opening the way for further practical and theoretical debates and development. 
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